Lesson 13. Velocity and Acceleration

1 Overview

- How can we find the velocity and acceleration of an object in 3D space?

2 Definitions

- Let $\vec{r}(t)=\langle f(t), g(t), h(t)\rangle$ be the position vector an object's position at time t
- For example, at time $t=2$, the object is at point
- The average velocity of the object over the time interval $\left[t_{1}, t_{2}\right]$ is
- Change in position (displacement) per unit time
- The velocity of the object at time t is
- Limit of average velocity as the interval length approaches 0
- The speed of the object at time t is
- The acceleration of the object at time t is
- How does the velocity change?

Example 1. Find the velocity, acceleration, and speed of a helicopter at time t with position vector $\vec{r}(t)=$ $\left\langle e^{t}, t e^{t}, \ln t\right\rangle$. What about when $t=2$?

Example 2. An airplane starts at an initial position $\vec{r}(0)=\langle 0,1,0\rangle$ with velocity $\vec{v}(0)=\langle-1,1,0\rangle$. Its acceleration is $\vec{a}(t)=\langle 6 t, 4 t, 1\rangle$. Find its velocity and position at time t.
Hint. If you have $f^{\prime}(t)$, then what does $\int f^{\prime}(t) d t$ give you?

- In general, we can recover velocity when acceleration is known:
\square
- We can also recover position when velocity is known:

Example 3. An airplane moves in space according to the vector function $\vec{r}(t)=\left\langle t^{2}-4 t, t^{2}, 4 t\right\rangle$. When is the speed a minimum?

